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Abstract

We address the problem of collective searching in which a group of walkers,
guided by a leader, looks for randomly located target sites. In such a process, the
necessity to maintain the group aggregated imposes a constraint in the foraging
dynamics. We discuss four different models for the system collective behavior,
with the leader and followers performing Gaussian as well as truncated Lévy
walks. In environments with low density of targets we show that Lévy foraging
is advantageous for the whole group, when compared with Gaussian strategy.
Furthermore, certain extra rules must be incorporated in the individuals’
dynamics, so that a compromise between the trend to keep the group together
and the global efficiency of search is met. The exact character of these rules
depends on specific details of the foraging process, such as regeneration of
target sites and energy costs.

PACS numbers: 05.50.Fb, 05.40.−a

1. Introduction

It is widely known that random searches are relevant in many diverse contexts, such as
anomalous diffusion, light scattering in inhomogeneous materials, ecology, genetics and
control theory, just to name a few [1, 2]. An important related question regards search
optimization, i.e. to determine specific strategies maximizing the ratio between the number
of encounters and an appropriate cost function [3–6]. Search processes frequently involve
constraints which generally limit their efficiency, e.g. dissipative losses and necessity of
keeping collective behavior for a long term. In particular, the study field of collective searching
[7] has attracted increasing attention in the past few years. In this case, a group, which may
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be constituted by a leader and followers, looks collectively for randomly distributed targets,
so that the intake is shared by all.

Establishing a group can be advantageous for many reasons, such as an exchange of
information and an overall increase in the collective ability to find targets [8]. Interestingly,
the gains associated with cooperative behavior are not restricted to biological organisms,
but can emerge as well in other contexts, as robots and crawlers performing team search
on networks [9, 10]. In addition, the flexibility of self-organized groups [11] can also be
very helpful when the searching landscape is in constant change [12]. Actually, for critical
situations, e.g. the edge of starvation [13], cooperation might become a fundamental ingredient
to avoid extinction.

In spite of the above advantages, collective search is not the only (or even the most
important) purpose of a group. Its formation can bear on extremely complex mechanisms
[7, 14, 15], which are not yet fully understood. In the realm of animal (and even human)
behavior, it is easy to think about many different driving forces for grouping: parental
bounding, duty sharing, mutual defense, transmission of past experiences (knowledge), etc.
Certainly, these many factors governing the group dynamics influence the strategies used for
random search. Indeed, a nice glance at the many aspects of the problem can be found in
a series of interesting works that study, both experimentally and theoretically, the foraging
behavior of groups of spider monkeys in the Yucatan peninsula in Mexico [16–19]. The
individuals are found to search following Lévy walk strategies, but the distributions of step
lengths present distinct exponents for males and females, a result which probably reflects
the different tasks the members of the group must accomplish within the community. As
a consequence, it seems clear that, in general, the searching behavior of a group is not just
a straightforward extension of the dynamics of a single element [20]. Furthermore, certain
simplifying assumptions used to describe collective searching can even lead to unrealistic
conclusions, as exemplified in [21]. On the other hand, including all the complex interactions
among individuals in a group may yield too complicated a model.

In this work, we address a somewhat but nevertheless still relevant question for the
understanding of this very complex problem. It is known that, under certain conditions,
Lévy search strategies result in optimal efficiency for a sole searcher [1, 3, 5, 13], behavior
empirically verified for a large number of different species [1, 22]. Here, we are interested
in studying how, in a collective search, a group can profit from Lévy strategies, although still
keeping its structure.

We should note that there are many instances in which a collective search takes place with
all elements having exactly the same role within the group [10, 20]. However, the development
of a hierarchical structure is also common, in which the group defines a leader for the search
[14]. Indeed, a large set of empirical evidence for various animal species [23] supports the
idea that single individuals can make decisions for the whole group (which sometimes is
called ‘despotic’ behavior). Even more interestingly, experiments carried out with a particular
species of primate during foraging [24] have shown the emergence of a leader–followers
relationship. Theoretical studies [25] have also revealed that in certain situations concrete
advantages (e.g. to reach a desired common speed or to get to a certain final destination) are
more easily achieved with this kind of searching. Thus, our analysis will be aimed at such
leader–followers dynamics.

The work is organized as follows: in section 2 we present general considerations on the
group dynamics, and define some relevant quantities for the subsequent analysis. We also
detail each of the four collective models considered, comprising both Gaussian and truncated
Lévy behavior of the leader and followers. Section 3 is devoted to the analysis of collective
search efficiency using an incremental version of the truncated Lévy model, which is shown
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to provide compatibility between efficient search and maintenance of the group character.
Conclusions are left to section 4.

2. Models of collective dynamics

We define four models of collective dynamics, generally based on ‘follow-the-leader’-type
strategies.

A group is here defined as composed of a leader element and a number of followers,
which are reciprocally related through a set of dynamic rules of movement in two dimensions.
We keep the present models as simple as possible, although still capturing the essence of
the collective behavior. Specifically, the stochastic character of the movement of the leader
and followers is implicit in the probability density functions (pdfs) for step lengths, pL(�)

and pF (�), and direction angles (with respect, e.g., to the x-axis), ωL(θ) and ωF (θ), where
subindices L and F concern the leader and followers, respectively.

We generally assume that the interactions among the elements of the group are effectively
intermediated by the leader, so that the followers’ paths do not depend on each others, even
though they fluctuate around the trajectory described by the leader. In this sense, a direct
stimulus–response correlation is induced between the leader and followers, which determines
the values of the mean radius of the group and coefficient of separation between the group
and the leader, respectively denoted by Rj and Cj (see below). Under such a framework, the
collective character of a group is sustained if such quantities do not increase considerably along
the walk trajectory. We also mention that in this work we are not considering the realistic
possibility of group fragmentation, which occurs, for instance, when Rj and Cj become so
large that the followers lose the capacity to accompany the leader, since it is too far away.
Nevertheless, we should stress that, although in the present models the followers can always
detect the leader’s position no matter its distance, a specific dynamics leading to strong
fluctuations in these quantities (e.g. if Rj and Cj become larger than the actual followers’ skill
to perceive the leader’s displacement) effectively indicate that the collective character of the
group could be lost with such a strategy.

We first discuss the behavior of the leader. We choose a uniformly random ωL(θ) pdf
and a pL(�) function either Gaussian (model A) or truncated Lévy (models B, C and D; see
below). In the latter, one has that, for any step,

pL(�) ∼ 1

�
μ

L

, �0 � �0 � �max,L, (1)

and pL(�) = 0 otherwise, with the lower cutoff �0 representing the minimum step length and
the maximum step length denoted by �max,L. (For reasons that become clear in section 3, here
we set �0 = rv , where rv is the so-called radius of vision [3].) Lévy walks and flights are
characterized by the existence of rare but extremely large steps, alternating between sequences
of many short-range jumps [2]. Indeed, it is clear from equation (1) that the smaller the Lévy
index μL, the larger the probability of long jumps becomes, with the ballistic limit reached
for μ → 1 (values μ � 1 do not correspond to normalizable pdfs).

In the context of realistic searches, generally involving dissipative processes associated
with the step length, truncation arises naturally due to the physical impossibility of infinitely
large steps. As a consequence, the genuine anomalous (superdiffusive) dynamics, observed
for 1 < μL � 3 when �max,L → ∞ [2], becomes limited to some typical characteristic length
scale related to �max,L [26]. Indeed, a diffusive dynamics governed by the central limit theorem
emerges beyond this threshold, although it has been shown [27] that, in the truncated Lévy
case, an astronomically large number of steps is needed before entering the Brownian regime.
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Figure 1. (a) ‘Follow-the-leader’-type dynamics in two dimensions, showing the leader and three
followers. As the former takes a step, the followers move according to the rules described in
the text in order to keep grouped in a compact way around the leader. (b) Illustration of average
quantities related to a ‘mean follower’ and the leader.

Thus, for 1 < μL � 3 and our choice of parameters we shall actually be working in the
effective superdiffusive regime [28] of truncated Lévy walks of the leader, so as to retain the
most important properties of non-truncated Lévy processes to a considerable extent.

On the other hand, for μL > 3 a diffusive Brownian search takes place, independently of
the value of �max,L. In this case, the statistical properties of the leader’s path are similar to
those of a walk generated by a Gaussian choice for pL(�) [29].

We now turn to the dynamics of the followers. For a group to remain essentially compact,
and continuously subject to the trends of a leader after j steps, the followers should lie within
a relatively small radius Rj around the leader as its path evolves (see our operational definition
of Rj below). Otherwise, if followers start to diverge from the leader’s position, the collective
character of the process is effectively lost.

There are many possible ways to implement dynamic rules of movement that lead to
finite values of Rj (not necessarily constant with path evolution). Our choices are described as
follows. First, suppose that after a certain number of steps the group is spatially distributed
around the leader, which then takes its next (say j th) step to a new position by following the
rules described above. Let θ̄i,j be the angle that should be taken by the follower i to reach the
new position of the leader. In all our models (see figure 1(a)) the actual direction angle of the
follower i is taken from a Gaussian ωF (θ)-pdf centered about θ̄i,j , with the standard deviation
σθ . Moreover, we consider the following choices for the followers’ step length distribution
pF (�) (see details of the specific models below): Gaussian (models A and B), with mean
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�̄i,j and standard deviation σ�, or Lévy truncated at a distance �max,F (generally smaller than
�max,L) (models C and D). Note that the correlation between the length and direction of the
leader’s and followers’ movements can be essentially parameterized by σθ and σ� (in the
Gaussian cases), and by σθ and a couple of extra rules (see below) relating the Cj/Rj -ratio
and the number of follower’s steps (in the truncated Lévy cases). In particular, for a Gaussian
pF (�) function with σθ = σ� = 0, their moves become identical, i.e. the group as a whole
displaces like a sole individual, right after the leader’s first step (total correlation; absence of
randomness in the spatial distribution of the followers around the leader: Rj = 0 for j > 1).

We now define some relevant quantities to describe the collective behavior of the leader
and followers. By denoting the vector position of the follower i after j steps of the leader as
�ri,j = (xi,j , yi,j ), the center of the mass of the set of NF followers is calculated:

�rCM,j =
(

1

NF

NF∑
i=1

xi,j ,
1

NF

NF∑
i=1

yi,j

)
. (2)

The spatial distribution of the followers around the leader can be characterized by the two
quantities mentioned above: (i) the mean radius Rj of the distribution of the followers about
their center of mass, and (ii) the distance between their center of mass and the leader’s position,
or coefficient of separation, Cj. One can readily define Rj as

Rj = 1

Nf

Nf∑
i=1

|�ri,j − �rCM,j|, (3)

which provides an indication of the group compactness. On the other hand, the coefficient of
separation,

Cj = |�rL,j − �rCM,j|, (4)

gives a measure of how much the group behavior still follows the leader’s trend after j steps.
Indeed, strong collective behavior is characterized by relatively small values of both Rj and
Cj. In addition, it is also interesting to define the average value of Rj over the whole walk:

〈R〉 = 1

NL

NL∑
j=1

Rj , (5)

where NL is the number of leader’s steps.
Although each follower takes its particular pathway in order to keep itself in the leader’s

vicinity, the average quantitative behavior can be inferred from the collective pattern as follows.
First consider a type of ‘mean follower’ typical of the whole walk. Let 〈�F 〉 and 〈�L〉 be the
average step lengths of this follower and the leader. Also, denote by 〈�FL〉 and 〈θFL〉 the
average distance and angle the follower should take to precisely reach the position of the
leader after a single step. From figure 1(b) one can see that

〈R〉2 = 〈�F 〉2 + 〈�FL〉2 − 2〈�F 〉〈�FL〉 cos(〈θFL〉). (6)

By writing

〈�FL〉2 = 〈R〉2 + 〈�L〉2, (7)

we obtain

〈R〉 =
√

(〈�F 〉2 + 〈�L〉2)2

[
sec(〈θFL〉)

2〈�F 〉
]2

− 〈�L〉2. (8)

Thus, by analytically calculating 〈�L〉 and 〈�F 〉 directly from the model definitions, and
obtaining 〈θFL〉 from simulations, we can estimate the mean radius of the followers’
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distribution around the leader, and compare the result with its numerically evaluated
counterpart, equation (5).

2.1. Collective Brownian model with leader’s Brownian behavior (model A)

This model is characterized by Gaussian pdfs for both the angle and step length of the followers,
respectively, ωF (θ), with mean θ̄i,j and standard deviation σθ , and pF (�), with mean �̄i,j and
standard deviation σ�. In this case, �̄i,j is chosen as the distance that should be taken by the
follower i to precisely reach the leader’s position after j steps. Further, the leader’s behavior
is determined by a uniformly random ωL(θ) and a Gaussian pL(�) as well, with mean �̄L and
standard deviation σL. Actually, this is the only model in this work in which the leader’s step
length pdf is Gaussian; in models B, C and D below the leader takes a truncated Lévy pL(�)

function.
In figure 2 we illustrate a part of the path evolution of the leader (with �̄L = 100 and

σL = 0) and six followers in three situations, namely (a) σ� = 30 and σθ = 0; (b) σ� = 0 and
σθ = π/4; and (c) σ� = 30 and σθ = π/4. We note in all cases a trend of the followers to
remain grouped around the leader’s position, even after a large number of steps, with the largest
dispersion observed when both σ� and σθ are non-null. In fact, this result is related to the small
standard deviation of the pdfs of both the (Gaussian) leader and followers, if compared with
the large second moment of truncated Lévy distributions, which generally tends to make the
followers disperse more easily with respect to the leader’s path. Moreover, the relatively strong
concentration of followers’ step lengths about the mean �̄i,j in this Gaussian case causes each
step of the leader to be generally accompanied by only a single step by each of the followers.
This might not be the case in truncated Lévy models (see the discussion below on models C
and D), in which either a difference in the indexes (μL < μF , where Brownian behavior of
followers means μF > 3), or the choice of very distinct upper cutoff lengths (�max,F � �max,L)
imply the necessity of the followers to perform several steps in order to accompany one single
jump of the leader.

Despite the strict maintenance of collective behavior in the present Brownian model,
verified, for instance, through the observation of small changes in Rj and Cj with j (not
shown), we note that the choice of Gaussian step length pdfs for both leader and followers
does not generally result in efficient collective search patterns when target sites are scarce,
similar to what occurs in searchers by sole individuals [1, 3]. In fact, truncated Lévy collective
searches involving exponents μL < 3 and μF < 3 always lead to higher efficiency in this
regime (see section 3). This is the reason why our focus in the next models is on Lévy rules
of movement (step lengths), at least for the leader.

2.2. Collective mean-truncated-Lévy model with leader’s truncated Lévy behavior (model B)

In this case, the leader’s step length pdf is a truncated Lévy one, equation (1), and its angle
distribution is uniformly random, as usual. On the other hand, the followers’ step length
and angle pdfs are Gaussian, with mean �̄i,j and standard deviation σ� in principle defined
just as in model A. However, since �̄i,j is now given by the distance �FL,ij that should be
taken by the follower i to reach the leader after a new single (j th) step, and considering that,
in the present model, the distances �FL,ij are (truncated) Lévy distributed (in contrast with
the Gaussian distribution observed in model A), the followers’ effective dynamics actually
becomes faster than diffusive (Brownian), being also strongly driven by the leader’s truncated
Lévy evolution. In contrast, in model A the Brownian behavior of the leader induces genuine
diffusive dynamics of the Gaussian followers.
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Figure 2. Collective Brownian model with leader’s Brownian behavior (model A). Illustration of
typical paths with six followers, using �̄L = 100, σL = 0 and (a) σ� = 30 and σθ = 0; (b) σ� = 0
and σθ = π/4; (c) σ� = 30 and σθ = π/4. The circumference around the leader is only a guide to
the eyes.

Figures 3–5 show, respectively for μL = 1.1, 2 and 3, the evolution as a function of j of
the quantities �j (of the leader), Rj and Cj, as well as the walk trajectory (leader and NF = 32
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Figure 3. Collective mean-truncated-Lévy model with leader’s truncated Lévy behavior
(model B), using μL = 1.1, �max,L = 105, rv = 1, σ� = �FL,ij /20, σθ = π/9 and 104

leader’s steps (only the first 103 are shown): (a) two-dimensional path; (b) sequence of leader’s
j th step lengths; (c) radius of the group Rj; and (d) coefficient of separation Cj.
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Figure 4. Same as in figure 3, for μL = 2.

followers) in the two-dimensional plane. In all cases we have considered 104 leader’s steps
(only the first 103 are shown), �max,L = 105, rv = 1, σ� = �FL,ij /20 and σθ = π/9.

Regarding the leader’s dynamics, we observe in figures 3(a) and (b), 4(a) and (b) and 5(a)
and (b) the typical pattern expected for (truncated) Lévy walks, with the nearly ballistic case
for μL = 1.1 showing the presence of rare large jumps, although limited by �max,L, alternating
between many short steps; as the value of μL increases, the probability of such large jumps
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Figure 5. Same as in figure 3, for μL = 3.

diminishes, and Brownian-like behavior emerges (see figures 5(a) and (b)). In all cases the
dynamics of the leader is accompanied by the followers, as explained above, with each step
of the leader corresponding to a single step by every follower.

The behavior of the mean radius of the group and coefficient of separation is shown in
figures 3(c) and (d), 4(c) and (d) and 5(c) and (d). We first note that each large jump of
the leader is essentially accompanied by a strong increase in both Rj and Cj. In this case
the difficulty in grouping the followers around the leader gets higher (larger coefficient of
separation), with simultaneous increasing of followers’ spread about their center of mass
(spatial distribution with larger average radius). This finding is also confirmed by the analysis
of the histogram of Rj (not shown), which displays much larger standard deviation as μL → 1
(compare, e.g., the typical ranges of Rj values: Rj � 4 × 103 for μL = 1.1 and Rj � 400 for
μL = 3). For μL → 3 the radius of the group presents smaller deviation around the mean,
also indicating that the influence of the leader on Rj is not so preponderant, in contrast with
the case μL → 1.

The average radius can be estimated in the present model by inserting into equation (8)
the expression for the mean step length of the leader:

〈�L〉 = (1 − μL)
(
�

2−μL

max,L − r2−μL
v

)
(2 − μL)

(
�

1−μL

max,L − r
1−μL
v

) , (9)

with the approximation 〈�F 〉 ≈ 〈�L〉 justified by the model rules. In addition, the numerical
analysis of 〈θFL〉 provides

〈θFL〉 = 2 +
πσθ

2
− 2 eασθ , (10)

with the fitting parameter α = 0.316 (the other numerical factors are adjusted so that
〈�FL〉 = 0 for σθ = 0—no angle dispersion around the straight line to the leader—
and 〈�FL〉 nearly saturates close to 1.55 as σθ → π ). Figure 6(a) displays the nice
agreement between the results of 〈R〉 versus μL from numerical simulations, with the use
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Figure 6. Dependence of the mean radius of the group, 〈R〉, on the leader’s Lévy exponent μL

(leader performs 106 steps; other parameters as in figures 3–5): (a) collective mean-truncated-Lévy
model with leader’s truncated Lévy behavior (model B); (b)–(c) collective truncated Lévy model
with leader’s truncated Lévy behavior ((b) continuous (model C) and (c) incremental (model D)
versions), using μF = 1.1 and �max,L = 50. Solid lines represent analytical calculation of 〈R〉
(see text).

of equation (5), and analytical, equations (8)–(10). (We have considered longer walks
in figure 6, with the leader performing 106 steps; other parameters are as in figures 3–
5.) As discussed, the mean radius increases considerably as larger jumps of the leader
become more probable (μL → 1), particularly for values μL < 2; in contrast, no
significant variation in 〈R〉 is observed for the nearly Gaussian dynamical regime of the leader
(μL → 3).
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2.3. Collective truncated Lévy model with leader’s truncated Lévy behavior:
continuous version (model C)

We now consider both the leader and followers taking their step lengths from truncated Lévy
distributions, with respective mean values given by equation (9) and

〈�F 〉 = (1 − μF )
(
�

2−μF

max,F − r2−μF
v

)
(2 − μF )

(
�

1−μF

max,F − r
1−μF
v

) . (11)

Note that, since μL and μF are arbitrarily chosen, the leader’s and followers’ dynamics are
less correlated than in model B. We also choose the leader to possibly access much larger
jumps: �max,F � �max,L. As above, the leader’s and followers’ angle pdfs are, respectively,
uniformly random and Gaussian. In the continuous version of this model, at each new jump
of the leader the dynamic rules are only applied to the followers upon total completion of the
leader’s step.

Due to the choice �max,F � �max,L, there is a trend for the followers to be left well behind
the leader in the long term. To compensate this, and maintain the group’s collective behavior,
an extra rule should be imposed on the followers’ dynamics: for a given step j of the leader, the
followers must perform a number of steps until the coefficient of separation becomes smaller
than the mean radius of the group, Cj < Rj . In other words, the followers must evolve until
the leader’s new position lies within the circumference of radius Rj and center at �rCM,j . From
figure 1(b), this mean number of steps can be estimated as

〈Ns〉 ∼ 〈�L〉
〈�F 〉 cos(〈θFL〉) . (12)

We further note that the large statistical fluctuations present in the truncated Lévy distribution
may lead this condition to be fulfilled in a number of followers’ steps much smaller than this
estimate for 〈Ns〉, e.g. if some followers get too close to each other, whereas another subset of
followers remains disperse. Thus, in order to group the followers in a compact way around the
leader, we also require the condition Cj < Rj to be satisfied at a minimum choice of 2〈Ns〉/3
steps. Only when both constraints are fulfilled can the leader take its next [(j + 1)th] step.

The mean radius 〈R〉 as a function of μL can be seen in figure 6(b), for μF = 1.1,
�max,L = 105, �max,F = 50, rv = 1 and σθ = π/4. Note that, since the angle deviation is
not explicitly correlated with the step length distribution, equation (10) approximately applies
to the present model as well. The analytical expression for 〈R〉 is obtained by substituting
equations (12) and 〈�FL〉 ∼ 〈Ns〉〈�F 〉 into equation (6), thus resulting in

〈R〉 = γ 〈�F 〉 tan(〈θFL〉) + β, (13)

where γ and β are numerical constants (dependent on the followers’ specific behavior),
eventually introduced in this mean approach in order to correct the results in the dispersionless
limit σθ = 0. Although still good, the fitting to the numerically evaluated 〈R〉 from
equation (5) is less perfect than that obtained using model B (figure 6(a)). This can be
attributed to the more complex set of rules involved in model C.

By comparing figures 6(a) and (b), we observe that, whereas 〈R〉 presents similar behavior
in the Brownian limit μL → 3 of both models B and C, the nearly ballistic regime with
μL → 1 displays very different magnitudes of the mean radius: 〈R〉 ≈ 2000 for model B and
〈R〉 ≈ 240 for model C. Indeed, the extra rules described above effectively act in the sense
to keep relatively small values of model C’s mean radius and coefficient of separation, even
for low μL and μF . The results for Rj and Cj (not shown) also reflect this feature, with the
presence of much smaller standard deviation for model C, as compared with that obtained
from model B dynamics (for the same value of μL).
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On the other hand, when results of simulations using different values of μL in the present
model are compared, a relevant feature becomes evident (similar to model B): Lévy leaders
with μL � 2 tend considerably to disaggregate the group, as the increase in 〈R〉 becomes
pronounced in this range. This result has important consequences in the context of collective
searches, discussed in section 3.

2.4. Collective truncated Lévy model with leader’s truncated Lévy behavior: incremental
version (model D)

Finally we consider an incremental version of the preceding model, in which, if the length �j of
the leader’s step j is larger than 〈�F 〉, then such a step is subdivided into �j/δ�L parts, and, after
the leader traverses each of these parts (and not only upon completion of the step), the dynamic
rules are applied to the followers. Here we consider increments δ�L = a〈�F 〉 cos(〈θFL〉) (see
figure 1(b) and equation (12)), with the numerical choice a = 2/3.

As a consequence of this incremental rule, the followers’ dispersion around the leader
(quantified by Rj and Cj) is greatly decreased, in comparison with the continuous version. This
can be seen, e.g., by contrasting figures 6(b) and (c), obtained with the same parameters, in
which the maximum value of 〈R〉 in the incremental version is about 30 times smaller than
that of the continuous version.

In addition, the reduced variation in the mean radius of model D in the range 1 < μL � 3
indicates that, in the incremental version, the difficulty in maintaining the group compact
around the leader is almost the same in the nearly ballistic and Gaussian regimes.

These findings have great relevance to the issue of compatibility between collective
efficient searches and maintenance of group character, as discussed in the next section.

3. Efficiency study of collective search models

We now consider a group of foragers (leader and followers) looking for point target sites with
uniformly random distribution in a two-dimensional search space. We are basically interested
in studying the case in which the target density is low, compared with the mean free path of
the foragers, λ. Indeed, very dense search spaces lead to the trivial result in which all foraging
strategies are nearly as efficient, since one target site can always be found in the forager’s close
vicinity [3]. Further, as justified above, we consider the collective dynamics of the incremental
version of the truncated Lévy model D.

In addition to the dynamics of model D, the searching and finding of sites by the leader
and followers obey the rules below.

(1) If there is a target site located within a ‘direct vision’ distance rv of an element of the
group (either the leader or a follower), then it moves on a straight line to the nearest target
site.

(2) If there is no target site within a distance rv around the element, then it chooses a direction
and a step length according to the rules of model D. It then incrementally moves to the
new point, continually looking for a target within a radius rv along its way. If it does not
detect a target, it stops after completion of the step, and chooses a new direction and a
new step length. Otherwise it proceeds to the target as in rule (1).

Note that, upon detection of a target along the search path, rule (2) contemplates the
possibility of truncation of a step even before it is finished (not to be mistaken with the built-in
upper truncation in the Lévy pdf). Rules (1) and (2) have been first applied to model the
foraging dynamics by a sole individual [3]. Once found, a target can either be revisited any
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Figure 7. Normalized efficiency, λη, versus leader’s Lévy exponent μL for the incremental version
of the collective truncated Lévy model with leader’s truncated Lévy behavior (model D). Results
are shown for (a) non-destructive and (b) destructive search, using NF = 32 followers, μF = 1.1,
rv = 1, �max,L = 105, �max,F = 4rvNF = 128, λ = 5000 and σθ = π/4. Solid lines are guides
for the eyes.

number of times (non-destructive foraging) or be destroyed (destructive foraging) [3]. In
the latter case, another site is created at a random position, so as to keep the target density
unaltered.

The efficiency function is defined [3] as the ratio between the quantity of targets found,
Nfound, and the total search path length (leader plus followers), Ltot, averaged over Nr

simulation runs:

η = Nfound

Ltot
. (14)

In figure 7 we plot the normalized efficiency versus μL, for (a) non-destructive and (b)
destructive cases. We have considered NF = 32 followers, with μF = 1.1, �max,L = 105,
λ = 5000, rv = 1 and σθ = π/4. Each simulation run ended upon the finding of Nfound = 104

targets, with average taken over (a) Nr = 104 and (b) Nr = 103 realizations. In addition, it is
also interesting to study the behavior of the search efficiency with the number of followers, NF.
In realistic contexts, it is not expected for the followers to increase considerably their density
with a fixed 〈R〉 as NF grows; otherwise the global search efficiency would tend to decrease, due
to the limitation in the number and diversity of targets found (more individuals searching in the
same area and sharing the intake). Some kind of subtle ‘repulsion force’ between the followers
must then be present to circumvent this potential difficulty. In our model approach, this can
be accomplished by setting, e.g., the number of followers to be proportional to the individual
upper cutoff length in the truncated Lévy distribution: �max,F = 4rvNF . As a result, for a
larger NF the mean distance between followers grows, resulting in a more extensive searched
area around the leader.

It is interesting to note in figure 7 that, for NF = 32, the qualitative behavior of η resembles
that of sole foraging [5], with the achievement of the maximum efficiency dislocating from
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μL � 2 (non-destructive search) to μL → 1 (destructive). In any case, Brownian searches
(μL > 3) are shown to be rather inefficient.

Nevertheless, one important distinction between sole and collective foraging arises due
to the inherent necessity to keep the group together in the latter. Indeed, we have noticed in
models A, B and C above the general increasing trend of the mean radius of the group for
μL � 2, which tends to destabilize the collective behavior in the long term, and to give rise to
a set of weakly-interacting individuals considerably distant from each other. This constraint
might potentially represent an actual problem whenever searches with increasing ballistic
feature of the leader become the optimal choice from the individuals’ point of view. However,
this drawback can be essentially eliminated by applying, e.g., an incremental dynamic strategy
as in model D. In this case, the optimal collective efficiency search strategy is achieved for
a value μopt,L related to a mean radius of the group essentially of the same size as the ones
of (much less efficient) Gaussian strategies: from figure 6(c), 〈R〉 ≈ 7.1 for μopt,L = 1.6,
whereas 〈R〉 ≈ 6.7 for μL = 2.9.

In the discussion above, as the number of followers grows, so does the total effective
area swept by the group, implying a type of rescaling of the individual radius of vision,
rv . In particular, in the limit in which the mean distance between followers approaches the
average separation between targets, there can possibly exist a target site in the vicinity of some
element (leader or follower). In this case, the rate of truncation of steps by the finding of a
target increases, and the dependence of the efficiency η on μL becomes weaker (as found,
e.g., in simulations with four times more followers). As a consequence, we notice that as the
number of followers grows, the optimal exponent tends to shift towards μL → 1.

Taking these considerations into account, we conclude that a balance must be achieved
between the trend to keep the group together and behaving in a collective fashion, and the
global efficiency of the search, which, depending on specific details of the foraging process
(e.g. regeneration of target sites, energy dissipative function, etc), can be maximized for a
value of μL in the interval 1 < μL � 2. In this sense, extra constraints in the way the group
elements perform their search paths can actually keep the radius of the group and coefficient of
separation suitable to avoid followers’ dispersion, even in the low-μL regime. Lévy strategies
and collective behavior can thus be compatible in the context of optimum random searches.

4. Conclusions

We have presented in this work four models of collective behavior of a leader and followers,
comprising both Gaussian and truncated Lévy dynamics.

From the unique viewpoint of keeping the group aggregated together, Lévy collective
behavior has shown to be more dispersive than the Gaussian one. Therefore, regarding
collective searches in environments with low densities of target sites, situations may appear
in which a Lévy dynamics of collective movement might conflict with the optimal search
strategy, with tendency to group dispersion and loss of collective character in the long term.

In spite of this, we have shown in a simplified context that extra rules imposed on the
dynamics of the group elements can actually make both efficient Lévy strategies and collective
search compatible. The identification of such rules in realistic (rather complex) scenarios is
an important line of investigation in random search theory. In this sense, further studies are
still needed in order to clarify this issue.

Finally, we mention a possible extension of the present work, related to the choice of
leadership during the random search. In a purely rational association between different
elements of a group, the leader should naturally be the most skillful member. This seems
to be the case [14] when social ties are weak or absent. On the other hand, many animal
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species [23] define a hierarchical structure reliant on dominance and affiliation [24]. It might
eventually happen that such ‘elected’ leader is not the most successful individual for foraging.
A model considering the performance of each element during the search, taking into account
the advantages to switch to a new (contextual) more efficient leader and also the costs of
breaking the already established bounds, could be an interesting way to study the balance
between social relations and optimization goals within a group, including the interesting
possibility of group fission [24].
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